54 research outputs found

    Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters

    Get PDF
    AbstractNicotinamide adenine dinucleotide—reduced form (NADH):quinone oxidoreductase (respiratory Complex I), F420H2 oxidoreductase and complex, membrane-bound NiFe-hydrogenase contain protein subunits homologous to a certain type of bona fide antiporters. In Complex I, these polypeptides (NuoL/ND5, NuoM/ND4, NuoN/ND2) are most likely core components of the proton pumping mechanism, and it is thus important to learn more about their structure and function. In this work, we have determined the transmembrane topology of one such polypeptide, and built a 2D structural model of the protein valid for all the homologous polypeptides. The experimentally determined transmembrane topology was different from that predicted by majority vote hydrophobicity analyses of members of the superfamily. A detailed phylogenetic analysis of a large set of primary sequences shed light on the functional relatedness of these polypeptides

    Homologous protein subunits from Escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis

    Get PDF
    AbstractThe complex I subunits NuoL, NuoM and NuoN are homologous to two proteins, MrpA and MrpD, from one particular class of Na+/H+ antiporters. In many bacteria MrpA and MrpD are encoded by an operon comprising 6–7 conserved genes. In complex I these protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Deletion of either mrpA or mrpD from the Bacillus subtilis chromosome resulted in a Na+ and pH sensitive growth phenotype. The deletion strains could be complemented in trans by their respective Mrp protein, but expression of MrpA in the B. subtilis ΔmrpD strain and vice versa did not improve growth at pH 7.4. This corroborates that the two proteins have unique specific functions. Under the same conditions NuoL could rescue B. subtilis ΔmrpA, but improved the growth of B. subtilis ΔmrpD only slightly. NuoN could restore the wild type properties of B. subtilis ΔmrpD, but had no effect on the ΔmrpA strain. Expression of NuoM did not result in any growth improvement under these conditions. This reveals that the complex I subunits NuoL, NuoM and NuoN also demonstrate functional specializations. The simplest explanation that accounts for all previous and current observations is that the five homologous proteins are single ion transporters. Presumably, MrpA transports Na+ whereas MrpD transports H+ in opposite directions, resulting in antiporter activity. This hypothesis has implications for the complex I functional mechanism, suggesting that one Na+ channel, NuoL, and two H+ channels, NuoM and NuoN, are present

    The Evolution of Respiratory Chain Complex I from a Smaller Last Common Ancestor Consisting of 11 Protein Subunits

    Get PDF
    The NADH:quinone oxidoreductase (complex I) has evolved from a combination of smaller functional building blocks. Chloroplasts and cyanobacteria contain a complex I-like enzyme having only 11 subunits. This enzyme lacks the N-module which harbors the NADH binding site and the flavin and iron–sulfur cluster prosthetic groups. A complex I-homologous enzyme found in some archaea contains an F420 dehydrogenase subunit denoted as FpoF rather than the N-module. In the present study, all currently available whole genome sequences were used to survey the occurrence of the different types of complex I in the different kingdoms of life. Notably, the 11-subunit version of complex I was found to be widely distributed, both in the archaeal and in the eubacterial kingdoms, whereas the 14-subunit classical complex I was found only in certain eubacterial phyla. The FpoF-containing complex I was present in Euryarchaeota but not in Crenarchaeota, which contained the 11-subunit complex I. The 11-subunit enzymes showed a primary sequence variability as great or greater than the full-size 14-subunit complex I, but differed distinctly from the membrane-bound hydrogenases. We conclude that this type of compact 11-subunit complex I is ancestral to all present-day complex I enzymes. No designated partner protein, acting as an electron delivery device, could be found for the compact version of complex I. We propose that the primordial complex I, and many of the present-day 11-subunit versions of it, operate without a designated partner protein but are capable of interaction with several different electron donor or acceptor proteins

    Transmembrane orientation and topology of the NADH:quinone oxidoreductase putative quinone binding subunit NuoH

    Get PDF
    NADH:quinone oxidoreductase, or Complex I, is a multi-subunit membrane-bound enzyme in the respiratory chain of many pro- and eukaryotes. The enzyme catalyzes the oxidation of NADH and donates electrons to the quinone pool, coupled to proton translocation across the membrane, but the mechanism of energy transduction is not understood. In bacteria the enzyme consists of 14 subunits, seven membrane spanning and seven protruding from the membrane. The hydrophobic NuoH (NQO8, ND1, NAD1, NdhA) subunit is seemingly involved in quinone binding. A homologous, structurally and most likely functionally similar subunit is also found in F420H2 oxidoreductases and in complex membrane-bound hydrogenases. We have made theoretical analyses of NuoH and NuoH-like polypeptides and experimentally analyzed the transmembrane topology of the NuoH subunit from Rhodobacter capsulatus by constructing and analyzing alkaline phosphatase fusion proteins. This demonstrated that the NuoH polypeptide has eight transmembrane segments, and four highly conserved hydrophilic sequence motifs facing the inside, bacterial cytoplasm. The N-terminal and C-terminal ends are located on the outside of the membrane. A topology model of NuoH based on these results is presented, and implications from the model are discussed

    The Na(+) transport in Gram-positive bacteria defect in the Mrp antiporter complex measured with (23)Na-NMR.

    No full text
    (23)Na-NMR has previously been used to monitor Na(+) translocation across membranes in Gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na-NMR method was adapted for measurements of internal Na(+) concentration in the Gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp antiporter complex, a member of the Cation Proton Antiporter-3 (CPA-3) family. The sodium sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted, could indeed be correlated to the inability of this strain to maintain a lower internal than external Na(+) concentration

    Revised transmembrane orientation of the NADH:quinone oxidoreductase subunit NuoA.

    No full text
    NuoA is a small membrane spanning subunit of respiratory chain NADH:quinone oxidoreductase (complex I). Unlike the other complex I core protein subunits, the NuoA protein has no known homologue in other enzyme systems. The transmembrane orientation of NuoA cannot be unambiguously predicted, due to the small size of the polypeptide and the varying distribution of charged amino acid residues in NuoA from different organisms. Novel analyses of NuoA from Escherichia coli complex I expressed as fusion proteins to cytochrome c and to alkaline phosphatase demonstrated that the c-terminal end of the polypeptide is localized in the bacterial cytoplasm, in contrast to what was previously reported for the homologous NQO7 subunit from Paracoccus denitrificans complex I

    Functional differentiation of antiporter-like polypeptides in complex I; a site-directed mutagenesis study of residues conserved in MrpA and NuoL but Not in MrpD, NuoM, and NuoN

    No full text
    It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na+ /H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits.) and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and 23Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I) showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research
    corecore